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Abstract. Even within the framework of the leading logarithmic approximation, the eigenvalues of the BKP
kernel for states of more than three reggeized gluons are unknown in general, contrary to the planar limit
case where the problem becomes integrable. We consider a 4-gluon kernel for a finite number of colors and
define some simple toy models for the configuration space dynamics, which are directly solvable with group
theoretical methods. Then we study the dependence of the spectrum of these models with respect to the
number of colors and make comparisons with the large limit case.

1 Introduction

In quantum field theory and statistical mechanics, the 1/N
(or large N) expansion [1] is a well known and extensively
used perturbative framework whenever the theories under
investigation present an internal symmetry typically re-
lated to groups like SO(N) or SU(N).
Quantum chromodynamics is one of the theories mostly

studied under this approximation even if, as a physical
gauge theory, it is characterized by a gauge group SU(Nc)
where the number of colorsNc is just 3. Recently, thanks to
the renewed interest induced by the ADS/CFT correspon-
dence, the N = 4 SYM theory in the infinity color (planar)
limit has been intensively studied and several important
results achieved.
The fact that the planar N = 4 SYM is expected by the

theoretical community to be solvable and that it is dual
to a superstring sigma model has led several theorists to
look for hints, in the absence of any supersymmetry, for
the existence of a possible dynamical system dual to pla-
nar QCD sharing with it some integrability properties. The
starting points are the integrable structures unveiled many
years ago at one loop in the standard perturbation theory
and some hints of possible integrability at two loops in the
planar limit.
The first evidence of an integrable structure at one loop

in QCD was found [2–4] by L.N. Lipatov in the framework
of the Regge limit of scattering amplitudes whose behavior
may be conveniently described by systems of interacting
reggeized gluons, as we shall briefly review in the next
section. The integrable dynamics, associated to the evo-
lution in rapidity of such a system, appears when one is
taking the large Nc approximation, which makes the BKP
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kernel [5–7] to resemble the structure of an Heisenberg
XXX spin chain, but for a non-compact SL(2,C) “spin”.
Going beyond the large Nc approximation, even in the

lowest orders in perturbation theory in the coupling con-
stant, is a formidable task and it is very difficult also to try
to estimate the error one faces when computing quantities
for infinite Nc (planar limit) instead of at Nc = 3.
It is the purpose of this work to introduce some finite

toy models, which share the same color structure of the
BKP systems and can be studied to determine the depen-
dence of the spectrum on the number of colors Nc. They
are characterized by a configuration space which is no more
the transverse plane but a finite vector space associated
to irreducible representations of the SU(2) group, so that
one may use group theoretical methods to analyse some of
these models.
This is, of course, not providing any concrete answer for

the question related to the real QCD problem, but never-
theless can be of some help. Moreover some toymodels may
be interesting by themselves as dynamical systems.
We start in the next section with a short review of the

properties of the system of interacting reggeized gluons in
the leading logarithmic approximation. In section three we
consider the color structure for the four reggeized gluon
system and describe how to use a convenient basis for it. In
section four we construct some finite toy models which are
studied in some details in a couple of subsections. After the
conclusions in few appendices we give more details on sym-
metry structures and on the features of these toy models.

2 BKP kernels

Let us start by giving a brief overview of the kernels which
encode the evolution in rapidity of systems of interacting
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reggeized gluons in the leading logarithmic approximation
(LLA). The reggeized gluons provide a convenient pertur-
bative description of part of the QCD degrees of freedom in
the Regge limit (also known as the small x limit) and ap-
peared in the investigations of the leading dependence of
the total cross sections on the center of mass energy in the
LLA, which is associated to the so-called BFKL (pertur-
bative) pomeron [8–10]. In the simplest form, the BFKL
pomeron turns out to be a composite state of two interact-
ing reggeized gluons “living” in the transverse configura-
tion plane in the colorless configuration. The construction
of the kernel reflects the property that in the Regge limit
the scattering amplitude factorizes in the impact factors
which determine the coupling of the external particles to
the t-channel reggeized gluons and in a Green’s function
which exponentiates the kernel and contains the rapidity
dependence of their composite state. Such a dependence
can be analyzed in terms of the spectral properties of the
kernel and in particular one is interested in the eigen-
values and eigenstates associated to the leading behavior.
Because of this the spectral problem is often formulated
in quantum mechanical terms with the kernel being the
“Hamiltonian” and its eigenvalues the “energies”.
In the case of a colorless exchange the Hamiltonian

is infrared finite and in LLA is constructed summing the
perturbative contributions of different Feynman diagrams:
in particular the virtual ones (reggeized gluon trajecto-
ries) ω and the real ones (associated to an effective real
gluon emission vertex) V . One writes formally H = ω1+

ω2+
→
T 1
→
T 2V12 where

→
T i are the generators of the color

group in adjoint representation. In the colorless case one

has
→
T 1
→
T 2 =−Nc, and finally one obtains:

H12 = ln |p1|
2+ln |p2|

2+
1

p1p
∗
2

ln |ρ12|
2p1p

∗
2

+
1

p∗1p2
ln |ρ12|

2p∗1p2−4Ψ(1) , (1)

where Ψ(x) = d lnΓ (x)/dx, a factor ᾱs = αsNc/π has
been omitted and the gluon holomorphic momenta and
coordinates have been introduced.
The gauge invariance gives the freedom to choose a de-

scription within the Möbius space [11–13], wherein the
functions describing the positions of the two reggeized glu-
ons in the transverse plane are zero in the coincidence limit.
In this space the BFKL hamiltonian has the property of
the holomorphic separability (H12 = h12+ h̄12). Moreover
a remarkable property is its invariance under the Möbius
group, whose generators for the holomorphic sector in the
Möbius space for the principal series of unitary representa-
tions are given by:

M3r = ρr∂r , M
+
r = ∂r , M

−
r =−ρ

2
r∂r . (2)

The associated Casimir operator for two gluons is

M2 = |
→
M |2 =−ρ212∂1∂2 , (3)

where
→
M =

∑2
r=1

→
Mr and

→
Mr ≡ (M+r ,M

−
r ,M

3
r ). Due

to this symmetry the holomorphic and anti-holomorphic

parts of the Hamiltonian can be written explicitly in terms
of the Casimir operator. Indeed one has, after defining for-
mally J(J −1) =M2,

h12 = ψ(J)+ψ(1−J)−2ψ(1) . (4)

Labelled by the conformal weights h= 1+n2 +iν, h̄=
1−n
2 +

iν, where n is the conformal spin and d = 1− 2iν is the
anomalous dimension of the operator Oh,h̄(ρ0) describing
the compound state [14, 15]. The eigenstates and eigenval-
ues of the full hamiltonian in (1), H12Eh,h̄ = 2χhEh,h̄ are,
respectively, given by:

Eh,h̄(ρ10,ρ20)≡ 〈ρ|h〉=

(
ρ12

ρ10ρ20

)h(
ρ∗12
ρ∗10ρ

∗
20

)h̄
,

(5)

and

χh ≡ χ(ν, n)

= ψ

(
1+ |n|

2
+ iν

)

+ψ

(
1+ |n|

2
− iν

)

−2ψ(1) .

(6)

The leading eigenvalue, at the point n= ν = 0, has a value
χmax = 4 ln 2≈ 2.77259, responsible for the rise of the total
cross section as sᾱsχmax , which corresponds to a strong vi-
olation of unitarity.
Let us now consider the evolution in rapidity of compos-

ite states of more than 2 reggeized gluons [5–7]. The BKP
Hamiltonian in LLA acting on a colorless state can be writ-
ten in terms of the BFKL pomeron Hamiltonian and has
the form (see [2–4])

Hn =−
1

Nc

∑

1≤k<l≤n

→
T k
→
T lHkl . (7)

This Hamiltonian is conformal invariant but cannot be
solved in general. Nevertheless the case of three reggeized
gluons, where the color structure trivially factorizes, is
solvable [2–4] and different families of solutions were
found [16, 17]. Physically these states are associated to the
so-called odderon exchange [18] and in particular the fam-
ily of solutions given in [17] corresponds to eigenvalues up
to zero (intercept up to one) and are the leading one in the
high energy limit. Moreover they have a non-null coupling
to photon-meson impact factors [19].
The case of more than three reggeized gluon is, in gen-

eral, not solvable but if one considers the color cylindri-
cal topology when taking the large Nc limit the resulting
Hamiltonian

H∞n =
1

2
[H12+H23+ · · ·+Hn1] = hn+ h̄n (8)

is integrable, i.e., there exists a set of other n−1 operators
qr, which commute with it and are in involution. They are
given, in coordinate representation, by

qr =
∑

i1<i2<···<ir

ρi1i2ρi2i3 · · ·ρiri1 pi1pi2 · · · pir , (9)
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together with similar relations for the anti-holomorphic
sector. In particular, q2 =M

2 is the Casimir of the Möbius
group. This is the first case where integrability was found
within the context of gauge theories analyzing the Green’s
function in some kinematical limit. This integrable model
is a non-compact generalization of the Heisenberg XXX
spin chains [2–4, 20] and has been intensively studied with
different techniques in the last decade [21–26].
Here we remind the result for the highest eigenvalue of

a system of four reggeized gluons in the planar, one cylin-
der topology (1CT), case: H∞4 ψ4 = 2E

1 CT
4 ψ4. The max-

imum value found, for zero conformal spin, is

E1CT4 = 0.67416 . (10)

In general for an arbitrary number n of reggeized gluon in
the cylindrical topology, the leading eigenvalues have been
found to be positive for even n and negative for odd n and
asymptotically behaving as 1/n [23, 24].
The following are two important questions that are un-

fortunately very hard to answer: what are the eigenvalues
at finiteNc = 3 and what is, in general, their dependence in
Nc? One may be tempted to apply variational or perturba-
tive techniques to the spectral problem, which nevertheless
appears to be quite involved. In any case a first step con-
sists of analyzing the color structure, which simplifies a bit
in the case of four reggeized gluons in a total colorless state.

3 Color structure

We consider the BKP kernel H4 for four gluons, given
in (7). This is an operator acting on four-gluon states,
which may be represented as functions of the transverse
plane coordinates and of the gluon colors v({ρi})

a1a2a3a4 .
Let us concentrate here on the color space.
It is convenient, due to the fact that the four gluons

are in a total color singlet state, to write the color vector
va1a2a3a4 in terms of the color state of a two gluon subchan-
nel. Let us, therefore, start from the resolution of unity for
a state of two SU(Nc) particles in terms of the projectors

P [Ri]
a′1a

′
2

a1a2 onto irreducible representations:

1 = P1+P8A+P8S+P10+1̄0+P27+P0 =
∑

i

P [Ri] ,

(11)

where TrP [Ri] = di is the dimension of the corresponding
representation. Let us note that we have chosen to consider
a unique subspace for the direct sum of the two spaces cor-
responding to 10 and 1̄0 representations. This is convenient
for our purposes, and we shall, therefore, consider just 6
different projectors to span the color space of two gluons.
If we consider gluons (1, 2) to be the reference channel

we introduce as the base for the color vector space the set{
P [Ri]

a3a4
a1a2

}
of projectors and write

va1a2a3a4 =
∑

i

vi
(
P [Ri]

a3a4
a1a2

)
or v =

∑

i

viP12[Ri] .

(12)

Note that one could have also chosen other reference chan-
nels corresponding to a description in terms of projection
onto irreducible representations of other gluon subsystems.
Having chosen a color basis, we find that the next step
is to write the BKP kernel with respect to it. We can
slightly simplify the expression for the kernel since for

a colorless state we have
∑
i

→
T iv = 0 which implies that

→
T 1
→
T 2v =

→
T 3
→
T 4v (an similarly for the other permutations

of the indices). Therefore one may write:

H4 =−
1

Nc

[→
T 1
→
T 2 (H12+H34)+

→
T 1
→
T 3 (H13+H24)

+
→
T 1
→
T 4 (H14+H23)

]
. (13)

Let us now write explicitly the action of the color op-

erators
→
T i
→
Tj =

∑
a T
a
i T
a
j which are associated to the

interaction between the gluons labelled i and j. We start
from the simple “diagonal channel” for which we have

relation
→
T i
→
Tj = −

∑
k akPij [Rk] with coefficients ak =(

Nc,
Nc
2 ,
Nc
2 , 0,−1, 1

)
. Consequently we can write in the

(1, 2) reference base

(→
T 1
→
T 2v
)j
=−ajv

j =−(Av)j , (14)

where A = diag(ak). The action on v of the
→
T 1
→
T 3 and

→
T 1
→
T 4 operators is less trivial and is constructed in terms

of the 6j symbols of the adjoint representation of SU(Nc)
group. We shall give few details in the appendix A and
write directly the results, in terms of the symmetric (after
a similarity transformation) matrix operators:

(→
T 1
→
T 3v
)j
=−

∑

i

(
∑

k

CjkakC
k
i

)

vi =−(CACv)j ,

(15)

and

(→
T 1
→
T 4v
)j
=−

∑

i

(
∑

k

sjC
j
kakC

k
i si

)

vi =−(SCACSv)j .

(16)

ThematrixC is the crossingmatrix built on the 6j symbols
and S = diag(sj) is constructed on the parities sj =±1 of
the different representations Rj .
We can therefore write the general BKP kernel for

a four gluon state, given in (13), as

H4 =
1

Nc

[
A (H12+H34)+CAC (H13+H24)

+SCACS(H14+H23)
]
. (17)

One can check that if we make trivial the transverse space
dynamics, replacing the Hij operators by a unit operators,
the general BKP kernel in (7) becomes Hn =

n
2 1̂ and in-

deed one can verify that A+CAC+SCACS =Nc1̂.
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Let us make few considerations on the largeNc limit ap-
proximation. As we have already discussed, in the Regge
limit one faces the factorization of an amplitude in im-
pact factors and a Green’s function which exponentiates
the kernel. The topologies resulting from the largeNc limit
depend on the impact factor structure. In particular one
expects the realization of two cases: the one and two cylin-
der topologies. The former corresponds to the case, well
studied, of the integrable kernel, Heisenberg XXX spin

chain-like. It is encoded in the relation:
→
T i
→
Tj→−

Nc
2 δi+1,j ,

which leads to H4 =
1
2 (H12+H23+H34+H41). It is char-

acterized by eigenvalues corresponding to an intercept less
then a pomeron. The latter case instead is expected to have
a leading intercept, corresponding to an energy depen-
dence given by two pomeron exchange. Consequently one
expects at finite Nc a contribution with an energy depen-
dence even stronger. In the two cylinder topology the color
structure is associated to two singlets (δa1a2δa3a4 , together
with the other two possible permutations). Such a struc-
ture is indeed present in the analysis, within the framework
of extended generalized LLA, of unitarity corrections to
the BFKL pomeron exchange [27] and diffractive dissoci-
ation in DIS [28], where the perturbative triple pomeron
vertex (see also [29, 30]) was discovered and shown to
couple exactly to the four gluon BKP kernels.
It is therefore of great importance to understand how

much the picture derived in the planar Nc =∞ case is far
from the real situation with Nc = 3. One clearly expects
for example that the first corrections to the eigenvalues of
the BKP kernel are proportional to 1/N2c , but what is un-
known is the multiplicative coefficient as well as the higher
order terms.

4 Toy models

In this section we shall consider a family of models, differ-
ent from the BKP system, which nevertheless share several
features with it and can be used to judge how the large Nc
approximation might be more or less satisfactory. More-
over these systems may be considered interesting by them-
selves as quantum dynamical systems.
A state of n reggeized gluons undergoing the BKP evo-

lution, described by the kernel in (7), belongs to a vector
space of functions on a domain given by the tensor product
of the color space 8n and the configuration spaceR2n, asso-
ciated to the position or momenta in the transverse plane,
of the n gluons. Indeed the BKP kernel is built as a sum

of product of color
(→
T k
→
T l
)
and of configuration (Hkl) op-

erators; the latter, on the Möbius space, can be written in
terms of the Casimir of the Möbius group, i.e., in terms
of the scalar product of the generators of the non-compact

spin group SL(2,C):Hkl =Hkl
(→
Mk ·

→
M l
)
.

We are, therefore, led to consider a class of toy models
where the BKP configuration space R2n is substituted by
the space V ns where Vs is the finite space spanned by spin
states belonging to the irreducible representation of SU(2)
with spin s. In particular we shall consider quantum sys-

tems with an Hamiltonian fitting the following structure:

Hn =−
1

Nc

∑

1≤k<l≤n

→
T k
→
T lf
(→
Sk
→
S l
)
, (18)

where
→
S i are the elements of the su(2) algebra associated

to the particle i in any chosen representation and f is
a generic function. A particular toymodel is therefore spec-
ified by giving the spin s of each particle (“gluons”) and the
function f . In the following we shall consider two specific
cases for the 4 particle system:
(a) A spin s = 1 case in a global singlet state v(∑
i

→
S iv = 0

)
. If f is the identity map than the “spin”

configuration dynamics is very similar to the one of the
color sector. In order to have a system which behaves simi-
larly to the BKP case, we first put a constraint on the two
particle operators, which describe the basic interaction. In
particular we consider the family of functions

fα(x) = 2Re

[

ψ

(
1

2
+
√
−α(4+2x)

)]

−2ψ(1) .

(19)

Remembering that for conformal spin n = 0 the BFKL
Hamiltonian is given by

Hkl = 2Re

[

ψ

(
1

2
+

√
1

4
+
(→
Mk+

→
M l
)2
)]

−2ψ(1) ,

one immediately recognizes that the fα is associated to
the substitution 14 +L

2
ij →−αS

2
ij which assures to have

the same leading eigenvalue for any α, since both expres-
sions have the value zero as upper bound. The parameter
α will be chosen in order to constrain the full four-particle
Hamiltonian (18) to have the same leading eigenvalue as
the QCD BKP system in the large Nc limit (at zero con-
formal spin). In this system, the BKP toy model, we shall
investigate finite Nc effects.
(b) A system TOYAdj,Fund with f the identity function

and spin s = 1/2. Such a system in the large Nc limit in
the case of one cylinder topology becomes the well known
Heisenberg XXX spin chain system which is integrable.We
shall perform some check on the Nc dependence again for
the 4-particle case.
(c) Moreover in order to have another check of the ap-

proach we shall also consider a model where the 4 par-
ticle belong to the fundamental representation of SU(2) for
both the “color” and the “spin” so that we can perform
a comparison with standard results from the spectroscopy
of isospin-spin systems. We place these checks in the Ap-
pendix.

4.1 BKP toy model

In order to explicitly study this finite system, described
by the Hamiltonian in (18) acting on vector states with
dimension (8× 3)4 and singlet under both SU(3)C and
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SU(2)spin conf, it is convenient to choose the color decom-
position in 2-particle subchannel irreducible representa-
tions described in Sect. 3 and adopt a similar approach also
on the “spin” degrees of freedom. After that one is left
with the problem of diagonalizing an Hamiltonian which
is a matrix 18×18, a problem addressable with any com-
puter. Without the singlet restriction on the spin part the
problem in general is much more complicated to be easily
solved and may be addressed in future investigations.
Let us therefore proceed by introducing for 2 par-

ticle spin 1 states the resolution of unity 1 =Q1+Q3+

Q5 =
∑
iQ[Ri] which let us write

→
S i
→
Sj =−

∑
k bkQij [Rk]

with bk = (2, 1,−1) (c.f. with ak: first, second and second
last terms). It is, therefore, straightforward to write from
a power series representation (Qij [Rk] are projectors):

f
(→
S i
→
Sj
)
=
∑

k

f(−bk)Qij [Rk]. (20)

Using the corresponding crossing matrices D and the par-
ity matrix S′, one obtains relations very similar to the one
reported in (14)–(16), which read

(
f
(→
S1
→
S2
)
v
)j
= f(−bj)v

j = (Bv)j , (21)

(
f
(→
T 1
→
T 3
)
v
)j
=
∑

i

(
∑

k

Djkf(−bk)D
k
i

)

vi = (DBDv)j

(22)

and

(
f
(→
T 1
→
T 4
)
v
)j
=
∑

i

(
∑

k

s′jD
j
kf(−bk)D

k
i s
′
i

)

vi

= (S′DBDS′v)j . (23)

From the above results for the two particle representation
basis, we can write the explicit form of the Hamiltonian for
this toy model, going beyond the one given in (17). Indeed
we obtain

H4a =
2

Nc
(A⊗B+CAC⊗DBD+SCACS

⊗S′DBDS′) , (24)

which contains a dependence on Nc and on the parameter
α through the function fα given in (19).
Let us note that in the large Nc limit one faces for the

Hamiltonian two possible cases: the one cylinder topology
(1CT) which corresponds to the simpler Hamiltonian

H1CT4a =−
1

Nc

[

−
Nc

2

∑

i

f
(→
S i
→
S i+1

)
]

=B+S′DBDS′

(25)

and the two cylinder topology (2CT) corresponding to the
even simpler Hamiltonian

H2CT4a =−
1

Nc

[

−Ncf
(→
S1
→
S2
)
−Ncf

(→
S3
→
S4
)
]

= 2B .

(26)

Let us remark that while in the case of Nc > 3, we con-
sider a basis for the vector states made of P [Ri]Q[Rj ] with
18 elements. Since in the color sector there is also the P0
projector, the case Nc = 3 is characterized by a basis of 15
elements.
As already anticipated, in order to study a toy model

resembling the spectrum of the BKP system of 4 gluons,
we require that, in the large Nc limit in the one cylinder
topology, the leading eigenvalue must be the same as the
one found for the corresponding integrable BKP system,
whose value was given in (10). This fact fixes the value of
the parameter α= 2.80665. We are, therefore, left with an
Hamiltonian which is just a function of the number of col-
orsNc.
Let us now consider its spectrum for the cases Nc = 3

and Nc =∞. Here we report the values followed by their
multiplicities. Note than for Nc = 3 there are 15 eigenval-
ues while they are 18 for any other value ofNc. For the case
Nc =∞ we specify also the topology they belong to.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Nc = 3
7.04193 (×1)
5.51899 (×2)
1.12269 (×2)
−3.89328 (×2)
−4.04744 (×1)
−4.27838 (×1)
−7.81242 (×1)
−9.18576 (×2)
−12.6743 (×2)
−14.1005 (×1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Nc =∞
5.54518 (×3)2CT
0.67416 (×3)1CT
−4.27838 (×3)1CT
−7.81242 (×3)2CT
−8.67983 (×3)1CT
−10.0168 (×3)2CT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We track the flow from NC = 3 to Nc =∞: the first
three highest eigenvalues (in bold) are moving to the same
leading value (in bold) which corresponds to two BFKL
pomeron exchange (in two cylinder topology). The fourth
and fifth highest eigenvalues (underlined) are instead mov-
ing to the leading eigenvalues of the one cylinder topology
case (which are three instead of two because of the larger
basis for Nc > 3). With very good approximation one finds
that the Nc dependence of the leading eigenvalue E0 is
given by

E0(Nc) =E0(∞)

(

1+
2.465

N2c

)

. (27)

One can see that for this toy model the large Nc approx-
imation corresponds to an error of about 27%, an error
which is not negligible because the coefficient of the leading
correction to the asymptotic value, proportional to 1/N2c ,
is a large number.
It is also easy to investigate the color-configuration

space mixing which is encoded in the eigenvectors. We re-
port some results in the Appendix .

4.2 TOYAdj,Fund

We nowmove to study the toy model described at point (b)
at the beginning of section 4, again to see how the largeNc
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approximation works. It is described by the Hamiltonian

HAdj,Fund =−
1

Nc

∑

1≤k<l≤n

→
T k
→
T l
σk

2

σl

2
, (28)

acting on spin singlet states. Again we consider the large
Nc limit. The one cylinder topology is associated to the
well known Heisenberg XXX spin chain with Hamiltonian

H1CTAdj,Fund =
1

2

n∑

i=1

σi

2

σi+1

2
, (29)

which we shall now consider for the case of n= 4 particle.
In this case at large Nc we have, as before, also the two
cylinder topology associated to the Hamiltonian

H2CTAdj,Fund = 2
σ1

2

σ2

2
. (30)

The spectrum for the one cylinder topology case is well
known from Bethe Ansatz methods [31] and for total zero
spin of a 4-particle spin chain the possible eigenvalues are 0
and −1 (see table II in [32] for J =−1/2 in their notation).
The two cylinder topology is characterized by the eigenval-
ues +1/2 and −3/2.
At finite Nc we rewrite the Hamiltonian in a similar

way to the BKP toy model case (see (24), where the B and
D matrices are defined for f the identity map and for the
group SU(2) in fundamental representation). At Nc = 3 it
corresponds to a 10×10 matrix while for Nc > 3 it is given
by a 12×12 matrix. The leading eigenvalue as function of
Nc can be easily computed

E0(Nc) =

√
10N2c +36+6

√
N4c +36N

2
c +36−2Nc

4Nc
(31)

and indeed goes to the value 1/2 in the large Nc limit.
Let us note that if one considers the planar approxi-
mation (in the 2CT configuration), the leading eigen-
value would be underestimated with a relative error of

Fig. 1. Nc dependence of the eigenvalues of the model
TOYAdj,Fund

(E0(3)−E0(∞)) /E0(3) � 40% w.r.t. the case Nc = 3.
In Fig. 1 we report theNc dependence of all the eigenvalues
in the range 3≤Nc ≤ 25.
Similar models, but in a higher spin representation, can

be constructed in order to maintain the integrability in
the large Nc limit. One simply needs to consider for any
irreducible representation s of the particles the function
f to be a corresponding specific polynomial as described
in [31].

5 Conclusions

We have introduced a family of dynamical models describ-
ing interacting particles with color and spin degrees of
freedom. The main motivation was to study within this
framework howmuch the largeNc approximation is signifi-
cant when one is trying to extract the spectrum of these
quantum systems.
Indeed in some relevant physical cases, the only results

available are restricted to the case with a planar structure
resulting from the large Nc approximation, when integra-
bility arises and gives the possibility to exactly solve the
problem. These facts are seen when considering QCD scat-
tering amplitudes in the Regge limit and LLA approxima-
tion, characterized by the BKP dynamics.
We have focused our study to the the case of four par-

ticles and considered in details three toy models. One toy
model (case (c) in Sect. 4.2) was considered to test our
computational method based on group theory since one
is able to make a direct comparison with results already
known from other methods used in spectroscopy.
The first model presented in Sect. 4.2 (a) is aimed to

mimic to some extend the behavior of the 4 gluon BKP ker-
nel, since we have forced it to have in the large Nc limit
the same leading eigenvalues of the BKP system for both
one and two cylinder topologies. We were able to compute
the different eigenvalues of this toy model as function ofNc
and we have found that the leading one at Nc = 3 present
corrections of almost 30% w.r.t. the planar approximation,
which one may understand in terms of a large coefficient in
the 1/N2c correction term. The mixing in color-spin config-
uration structure has been also studied.
Another model (case (b) in Sect. 4.2) was considered

since in the large Nc limit it gives rise to the one cylinder
topology Heisenberg XXX spin chain which is integrable.
For the spin 1/2 case we have found at finiteNc = 3 correc-
tions to the leading eigenvalue of about 40%.
Let us note that in our analysis we were restricting our-

selves to study the toy model Hamiltonians on the space of
states which are singlet with respect to the SU(2) “spin”
configurations. This was a choice dictated by technical rea-
sons but one should look forward to extending the investi-
gation to all the possible states.
These kind of models and possibly more general ones

appear to be interesting also by themselves and we feel that
they deserve more studies in order to see, for example, if
some remnant from integrability can be traced back at fi-
nite Nc.



P.L. Iafelice, G.P. Vacca: Colored spin systems, BKP evolution and finite Nc effects 587

Acknowledgements. G.P.V. thanks the Alexander von Hum-
boldt Stiftung for the support during the early stage of

this work and is very grateful to J. Bartels, L.N. Lipatov
M.A. Braun and M. Salvadore for very interesting and stimu-
lating discussions.

Appendix A

In this appendix we note a few facts about the crossing ma-
trices introduced in Sections 3 and 4 for the SU(Nc) group.
Related considerations may be found in [33–37] where ex-
plicit expressions for the crossing matrices can be found
and therefore will not be given here.

Let us rewrite in graphic notation the operator
→
T i
→
Tj in

the basis (i, j) and the color vector state in the basis (1, 2).

= −∑
k ak

i j

v =
∑

i v
i

i

21

3 4

k

ji

Let us compute the first non-trivial crossing case,
→
T 1
→
T 3v, remembering to rewrite the final result again in the

basis (1, 2). In a graphical notation, we have

where the crossing matrix (essentially 6j symbols) can
be written as

Ck
i =

i k

k

In a similar way one can also trace the action of the
→
T 1
→
T 4 operator. One can see that in the last relation there

is an asymmetry due to the fact that one divides by the

dimension of the k-representation. It is convenient to per-
form a similarity transformation to work with a symmetric
crossing matrix. For this purpose it is sufficient to intro-
duce the matrix ∆= diag(di) and define the new symmet-

ric matrix C →∆−
1
2C∆

1
2 which acts on the vectors with

components vi→
(
∆−

1
2 v
)i
.

Appendix B

Let us consider the BKP toy model described and analysed
in Sect. 4.1. From numerical investigations one finds that
the leading eigenvector v0 and the two closest subleading
v1,2 atNc = 3 have the following components

v0 �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.590 P1Q1
0.085 P1Q5
0.344 P8AQ3
0.199 P8SQ1
0.199 P8SQ5
0.293 P10+1̄0Q3
0.179 P27Q1
0.574 P27Q5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

v1 �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.166 P1Q3
0.342 P8AQ1
0.317 P8AQ5
0.385 P8SQ3
0.267 P10+1̄0Q1
0.598 P10+1̄0Q5
0.421 P27Q3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

v2 �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.775 P1Q1
0.002 P1Q5
0.008 P8AQ3
0.123 P8SQ1
0.114 P8SQ5
0.268 P10+1̄0Q3
0.151 P27Q1
0.525 P27Q5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

As one can see the eigenvector v0 of the highest eigen-
value is even while the twofold degenerate next larger
eigenvalue has eigenstates of both parities (v1 odd and v2
even).
In the large Nc limit case the eigenvectors of the three-

fold degenerate leading eigenvalue of the two cylinder
topologies are

w
(2CT)
0 �

(
1 P1Q1

)
w
(2CT)
1 �

⎛

⎜
⎜
⎜
⎝

1
3 P10+1̄0Q1√
5
3 P10+1̄0Q5
1√
6
P27Q3

1√
6

P0Q3

⎞

⎟
⎟
⎟
⎠

w
(2CT)
2 �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
3
P10+1̄0Q3

1
3
√
2
P27Q1

√
5

3
√
2
P27Q5

1
3
√
2

P0Q1
√
5

3
√
2

P0Q5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Again in this system, we can track the same parity
properties, which are invariant under the flow in Nc.
Similarly one may investigate the states associated to

the one cylinder topology at Nc =∞ and their corres-
ponding partners at finite Nc. For brevity we just re-
port here the two most relevant states in the Nc infinity
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limit:

w
(1CT)
0 �

⎛

⎝
z1 P8AQ1
z3 P8SQ3
z5 P8AQ5

⎞

⎠w
(1CT)
1 �

⎛

⎝
z1 P8SQ1
z3 P8AQ3
z5 P8SQ5

⎞

⎠

w
(1CT)
2 �

(
0.245 (P0Q1−P27Q1)
0.663 (P0Q5−P27Q5)

)

,

where z1 � 0.815, z3 � 0.405 and z5 � 0.415.We stress that
w
(1CT)
2 has no correspondent eigenstate at Nc = 3.

Appendix C

This appendix is devoted to check in one specific case that
our approach gives result in agreement with other methods
widely used in spectroscopy. We start by considering a sys-
tem of n particles in the bifundamental representation
of SU(Nc)×SU(2), characterized by an Hamiltonian (18)
(with f the identity function)

Hn =−
1

Nc

∑

1≤k<l≤n

→
T k
→
T l
→
Sk
→
S l , (C.1)

which can be written in terms of the quadratic Casimir op-
erators of SU(Nc), SU(2) and SU(2Nc)⊃ SU(Nc)×SU(2)
(see [38]).

Indeed the tensor products of
→
T k
→
S l are among the gen-

erators of SU(2Nc), so it is useful to introduce the entire
algebras for this group

αk =

⎧
⎪⎪⎨

⎪⎪⎩

1√
Nc
Sl k = 1, 2, 3 = l

1√
2s+1
Ta k = 4, . . . , N2c +2; a= 1, . . . , N

2
c −1

√
2TkSl k =N2+3, . . . , 4N2c −1; l = 1, 2, 3

,

(C.2)

with the normalization Tr(αkαk′) = 1/2δkk′ . The Hamilto-
nian for this system can be rewritten as

HAll-fund =−
1

4Nc

[

C2Nc −
1

Nc
CNc−

1

2s+1
C2

−2n
N2c −1

2Nc
s(s+1)

]

, (C.3)

where the quadratic Casimir operators Cn are defined as
in [38] and s= 1/2. Note that all the operators introduced
above depend on the irreducible representation of the sym-
metry group to which they refer to.
We are interested in the real representations so we set

Nc = 2 and consider the case of only four particles. The
symmetry group of the model becomes SU(2)⊗SU(2) ⊂
SU(4) and (C.3), written for the four particle in a global
singlet state, takes the form

HAll-fund =−
1

8

[

C4(R)−
9

2

]

. (C.4)

Table 1. Correspondence between irreps of SU(4) and SU(2)⊗
SU(2)

SU(2)⊗SU(2) SU(4) (µ1, µ2, µ3)≡RSU(4)

1⊗1 1, 20, 35 (0, 0, 0)(0, 2, 0)(4, 0, 0)
1⊗3 15, 45 (1, 0, 1)(2, 1, 0)
1⊗5 20 (0, 2, 0)
3⊗3 15, 20, 35, 45 (1, 0, 1)(0, 2, 0)(4, 0, 0)(2, 1, 0)
3⊗5 45 (2, 1, 0)

In order to find its spectrum the next step consists of ana-
lyzing the irreducible representation content of each sym-
metry group of the model. So, for four particle with spin
1/2, one has (we specify also the multiplicity)

2⊗2⊗2⊗2= 2(1)+3(3)+5 , (C.5)

and in the SU(4) case

4⊗4⊗4⊗4= 1+3(15)+2(20)+35+3(45) .
(C.6)

Then we need to study the SU(2)⊗SU(2) content of these
SU(4) irrep. This can be done using the results of [39] and
in particular the entries of Table 1, where the values in the
third column are Dynkin indices.
So for particles in a total singlet state (1⊗1) the Hamil-

tonian in (C.4) admits four eigenvalues, each for a different
irrep of SU(4), with a twofold degenerate eigenvalue corre-
sponded to 20SU(4)) (see (C.6)):

⎧
⎪⎪⎨

⎪⎪⎩

− 1516 , for irrep 35

− 316 (2x), for irrep 20

+ 916 , for irrep 1

, (C.7)

and these are in perfect agreement with the spectrum eval-
uated with the method used previously throughout the
paper (we take advantage from the formulas of [40] for the
eigenvalues of a quadratic Casimir operator as functions of
the Dynkin indices).
As a final remark we want to emphasize that the

method of writing the Hamiltonian in terms of the Casimirs
can be applied to systems with any number of particles (at
the price, increasing their number, of a growing complexity
in the induced irreducible representations) and moreover
the analysis may not be restricted to singlet subspaces. Un-
fortunately it is not clear how to define a method for inter-
acting particle not in the bifundamental representation.
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